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Abstract — During Trypanosoma cruzi infection, oxidative stress is considered a contributing factor for dilated
cardiomyopathy development. In this study, the effects of astaxanthin (ASTX) were evaluated as an alternative drug
treatment for Chagas disease in a mouse model during the acute infection phase, given its anti-inflammatory,
immunomodulating, and anti-oxidative properties. ASTX was tested in vitro in parasites grown axenically and in
co-culture with Vero cells. In vivo tests were performed in BALB/c mice (4—6 weeks old) infected with Trypanosoma
cruzi and supplemented with ASTX (10 mg/kg/day) and/or nifurtimox (NFMX; 100 mg/kg/day). Results show that
ASTX has some detrimental effects on axenically cultured parasites, but not when cultured with mammalian cell
monolayers. /n vivo, ASTX did not have any therapeutic value against acute Tirypanosoma cruzi infection, used either
alone or in combination with NFMX. Infected animals treated with NFMX or ASTX/NFMX survived the experimen-
tal period (60 days), while infected animals treated only with ASTX died before day 30 post-infection. ASTX did not
show any effect on the control of parasitemia; however, it was associated with an increment in focal heart lympho-
plasmacytic infiltration, a reduced number of amastigote nests in cardiac tissue, and less hyperplasic spleen follicles
when compared to control groups. Unexpectedly, ASTX showed a negative effect in infected animals co-treated with
NFMX. An increment in parasitemia duration was observed, possibly due to ASTX blocking of free radicals, an anti-
parasitic mechanism of NFMX. In conclusion, astaxanthin is not recommended during the acute phase of Chagas dis-
ease, either alone or in combination with nifurtimox.
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Résumé — Effets de ’astaxanthine chez la souris infectée par Trypanosoma cruzi. Pendant I’infection par
Trypanosoma cruzi, le stress oxydatif est considéré comme un facteur contribuant au développement de la
cardiomyopathie dilatée. Dans cette étude, les effets de I’astaxanthine (ASTX) ont été évalués comme un
traitement médicamenteux alternatif pour la maladie de Chagas chez un modéle de souris pendant la phase
d’infection aigu€, compte tenu de ses propriétés anti-inflammatoires, immunomodulantes et anti-oxydantes.
L ASTX a été testée in vitro sur des parasites cultivés axéniquement et en co-culture avec des cellules Vero.
Des tests in vivo ont été effectués chez des souris BALB/c (4gées de 4-6 semaines) infectées par 7. cruzi
et traitées par ASTX (10 mg/kg/jour) et/ou nifurtimox (NFMX, 100 mg/kg/jour). Les résultats montrent que
I’ASTX a des effets néfastes sur les parasites cultivés axéniquement, mais pas lorsqu’ils sont cultivés avec des
monocouches de cellules de mammiferes. /n vivo, ’ASTX n’a eu aucune valeur thérapeutique contre 1’infection
aigué par 7. cruzi, utilisée seule ou en association avec NFMX. Les animaux infectés traités par NFMX ou
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association avec le nifurtimox.

Introduction

Chagas disease is a zoonotic health concern in Latin
America caused by Trypanosoma cruzi, with an estimated
6—7 million people infected. The infection is not limited to
vectorial transmission, since it can be transmitted through
blood transfusion or organ or tissue transplantation, and
many cases of non-vectorial transmission have been reported
in non-endemic areas [52].

The drugs available for the treatment of Trrypanosoma cruzi
infection in institutional health systems in Latin America are
nifurtimox and benznidazole. However, these drugs have
limited therapeutic value since they are effective only during
the acute stages of the disease, and because these drugs may
induce severe side effects in people undergoing long-term
treatment [10, 50]. Furthermore, resistance to NFMX and
benznidazole has been reported in parasites of different geno-
types in endemic zones [9]. These therapeutic drawbacks leave
people of all ages at risk [46, 47], and therefore, new strategies
should be studied if an effective treatment is to be found.

During the acute phase of Chagas disease, an excessive
production of free radicals in the heart has been correlated with
irreversible oxidative stress (OS)-induced cardiomyocyte
damage. Recent studies that analyzed the condition of the heart
in Chagas disease have suggested that factors other than
myocardial parasitism and autoimmune aggression are
involved. It is unclear whether the tissue destruction is caused
directly by factors related to the parasite, or indirectly by an
immuno-inflammatory response amplified by the systemic
overgeneration of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) [14, 6, 53]. Chagasic cardiomyopa-
thy develops in 30-40% of chronically infected people.
Cardiomyopathy may progress to cardiac insufficiency and
sudden death because of progressive damage to cardiomy-
ocytes and the ventricular intertruncal plexus [23].

Several studies in chronic chagasic patients suggest that
the use of antioxidants, such as vitamin E and C, decreases free
radical levels and the OS associated with the disease [30, 42],
protecting the myocardium and preventing the progression of
chagasic cardiomyopathy into more severe syndromes [51].
Astaxanthin (ASTX), a reddish carotenoid that belongs to
the xanthophyll class, is a potent antioxidant naturally
found in several sea animals (Haematococcus pluvialis) and
plant species [18, 22]. It has anti-inflammatory [25] and
immunomodulatory properties [12], which can stabilize free

ASTX/NFMX ont survécu a la période expérimentale (60 jours), tandis que les animaux infectés traités uniquement
avec ASTX sont morts avant le 30¢éme jour apres I'infection. CASTX n’a montré aucun effet sur le contréle de la
parasitémie; cependant, elle a été associée a une augmentation de l’infiltration focale lymphoplasmocytaire du
cceur, un nombre réduit de nids d’amastigotes dans le tissu cardiaque et a des follicules de la rate moins
hyperplasiques par rapport aux groupes témoins. De maniére inattendue, ’ASTX a montré un effet négatif chez
les animaux infectés co-traités avec NFMX. Une augmentation de la durée de la parasitémie a été observée,
probablement due au blocage par ’ASTX des radicaux libres, un mécanisme antiparasitaire du NFMX. En
conclusion, I’astaxanthine n’est pas recommandée pendant la phase aigué de la maladie de Chagas, seule ou en

radicals and decrease oxidative stress damage, protecting
biologically important molecules. Studies have shown that
ASTX counteracts OS caused by some heart diseases, prevent-
ing tissue damage caused by cell oxidation and contributing to
a healthier myocardium [17, 34]. Here, we evaluated the effects
of ASTX supplementation during the acute phase of Chagas
disease in an induced infection with a pathogenic strain
(Ninoa) of Trypanosoma cruzi in BALB/c mice.

Materials and methods
Ethics

Mice were kept, fed, and reared under standard conditions
(18-23 °C, 50-60% relative humidity), according to the
guidelines of the Bioethics Committee of the FMVZ-UAEM,
the Official Mexican Standard regarding technical specifica-
tions for the care and use of laboratory animals (NOM-062-
Z00-1995) [37], and the standards of the National Academy
of Science [35].

Parasite culture

Trypomastigotes of Trrypanosoma cruzi, Ninoa strain (TCI)
(kindly donated by Dr. Pedro Reyes from the Instituto Nacional
de Cardiologia “Ignacio Chavez”), were used to infect Vero
cell monolayers, which were maintained in Dulbecco’s
minimal essential medium (DMEM [Gibco Laboratories,
USA]), supplemented with 2% fetal bovine serum (FBS
[Gibco Laboratories, USA]) and 1% penicillin-streptomycin
(Gibco Laboratories, USA), under controlled conditions
(37 °C, 5% CO,, and saturated humidity) [31].

Parasite harvest from cell culture

Parasites were cultured for 1-2 weeks on Vero cell mono-
layers, when they started to break out from the infected cells.
The medium with free-swimming parasites was then collected
in 15 mL sterile conical tubes and centrifuged at 2700 rpm for
7 min. The supernatant was discarded and the pellet was resus-
pended in 1 mL of DMEM (Gibco Laboratories, USA).
Parasites were counted using a hemocytometer, and the
number of parasites was adjusted to the specific needs of each
assay (in vitro or in vivo).
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Astaxanthin preparation for in vitro assays

In order to purify astaxanthin from the commercial
preparation for the in vitro assay, one gram of microencapsu-
lated astaxanthin (AstaPure®, Algatechnologies, Israel) was
ground in a sterile mortar, placed in a 15 mL sterile conical
tube, and suspended in 6 mL of extraction solution (petroleum
ether:acetone:water, [15:75:10]) [33]. The suspension was
mixed by inversion several times and gently vortexed for
15 min. The tube was centrifuged at 7500 rpm for 10 min at
4 °C, and the supernatant collected in a fresh sterile 15 mL
tube. The solvents were evaporated at 40 °C for 12 h in dark
conditions and the astaxanthin was resuspended in 2 mL of
DMEM-dimethyl sulfoxide (DMSO [Sigma-Aldrich, USA])
(99.7/0.3% V/V solution). This suspension was gently vortexed
for 10 min, and then filtered using an acrodisc syringe filter
(0.22 pm) in a 1.5 mL sterile tube and kept at 4 °C until
use. The ASTX concentration was determined in a 96-well
plate using a f-carotene (Sigma-Aldrich, USA) standard curve
and read at 450 nm in a spectrophotometer (BioTek, USA).
A simple linear regression was used to determine ASTX
concentrations in pg/pL.

Astaxanthin in vitro toxicity assay for T. cruzi
and Vero cells

Trypomastigotes (5 x 10°/well) or Vero cells (2 x 10%
well) were cultured in a 96-well plate (Sarstedt, USA) in
supplemented DMEM (2% FBS, penicillin 10,000 units/mL,
and streptomycin 10,000 pg/mL) and astaxanthin at 1, 5, 10,
20, or 30 pg/100 pL. The assay was performed in triplicate
with the following controls: a) C-T (untreated trypomastig-
otes), b) C-V (untreated Vero cells), c) DMEM/DMSO in a
proportion equivalent to the amount of DMSO used in the
highest ASTX dose (99.7/0.33% V/V, respectively) (this con-
trol was necessary since ASTX and NFMX were solubilized
in this solvent), and d) nifurtimox (400 pg/100 uL) (Lampit®,
Bayer). NFMX was prepared as previously described by Rolén
et al. [43]. One tablet of the commercial presentation of NFMX
(120 mg) was ground in a sterile mortar and resuspended in
1 mL of DMSO. The final DMSO concentration in the culture
media never exceeded 0.3% in a V/V solution. Plates
were incubated for 24 h in controlled conditions (37 °C, 5%
CO,, and saturated humidity). After treatment, the viability
of parasites and cells was estimated using MTS
(3-[4,5,dimethylthiazol-2-yl]-5-[3-carboxymethoxy-phenyl]-2-
[4-sulfophenyl]-2H-tetrazolium, inner salt) from CellTiter 96
kit® Aqueous One Solution (Promega, USA), following the
manufacturer’s instructions. The metabolic activity of parasites
and cells over MTS was estimated by colorimetry at 490 nm
wavelength. In this assay, the higher the optical density (OD)
values, the higher the cell viability.

Morphologic evaluation of changes induced
by ASTX on Vero cells and T. cruzi co-cultures

Vero cells (5 x 10*/well) were seeded and cultured for 24 h
as previously described and then infected with trypomastigotes

(10 parasites/cell) [13]. Once intracellular parasites were
observed (about 96 h after infection), the old medium was
replaced with fresh supplemented DMEM with different
ASTX doses (1, 5, 10, 20, or 30 pg/100 pL). As a control,
co-cultures were kept with NFMX (400 pg/100 pl) or
with no ASTX or NFMX supplementation. After 24 h of incu-
bation, microscopic morphological changes in the co-culture,
such as loss of normal shape of 7. cruzi infected Vero cell,
changes of normal parasite shape or motility, and variations
in the presence of intra- or extra-cellular parasites were
evaluated by a trained technician. Additionally, parasite
viability was evaluated by Trypan blue stain assay [2].

Animals and challenge

BALB/c female mice (N = 48), 46 weeks old, were
distributed in eight groups (n = 6): G1 (Tc); G2 (Tc/ASTX);
G3 (Tc/ASTX/NFMX); G4 (Tc/NFMX) and four non-infected
controls: G5 (saline solution); G6 (NFMX); G7 (ASTX/
NFMX); and G8 (ASTX). Animals from groups Gl to G4
were infected intraperitoneally with 10 trypomastigotes each.
Specimens were clinically evaluated on a daily basis; any
animal health changes, such as weight loss, hirsutism, morbid-
ity, lameness, or any other behavioral changes, were recorded.
We decided to use ASTX during the acute phase of infection in
BALB/c mice because there are no previous reports on the use
of antioxidants at this stage of infection and because in in vitro
experiments in our laboratory, ASTX had some antiparasitic
effect. We also decided to test ASTX as an antiparasitic agent
during an early stage of infection in BALB/c mice because this
mouse strain is susceptible to infection with Ninoa strain of
T cruzi with a predictable outcome and the parasitemia is
easily detected. Therefore, during the acute phase of infection,
the level of parasitemia was used as an indicator of disease
development [15], providing an easy-to-evaluate parameter,
to determine the possible effects of ASTX on the infection
while animals were alive.

Parasitemia

Parasitemia was analyzed for each mouse, by fresh blood
smear test. Samples were collected twice a week starting on
day 5, until day 60 post-infection, or when parasitemia was
undetectable microscopically in fresh blood preparations.
Sampling was performed according to Brener [7] with slight
modifications. Briefly, a small cut was performed on the tip
of the tail of the mouse, blood (4 puL) was collected with a
micropipette, placed on a glass slide, and covered with a
coverslip (18 x 18 mm). Samples were observed under light
microscopy at 400x. Parasites in 100 fields were counted,
and the number of parasites/\L. was estimated with standard
protocols [28, 45].

ASTX supplementation and NFMX treatments
for in vivo assays

From day 12 onwards, ASTX and/or NFMX (Lampit®,
Bayer) were administered according to the animals’ treatment
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Table 1. Description of treatments used in in vivo experiments.

Mice groups (n = 6) T. cruzi Ninoa strain (Infection dose)

Astaxanthin dose (mg/kg/day) Nifurtimox dose (mg/kg/day)

G1 (Tc)

G2 (Tc/ASTX)

G3 (Tc/ASTX/NFMX)
G4 (Tc/NFMX)

G5 (saline solution)
G6 (NFMX)

G7 (AST/NFMX)

G8 (ASTX)

10 parasites
10 parasites
10 parasites
10 parasites

10

10 100
100
100

10 100

10

Tc: Challenge with 7. cruzi (positive control); ASTX: Astaxanthin; NFMX: Nifurtimox; G5-G8 (controls). Six BALB/c mice were used per

group.

group (Table 1). ASTX was prepared from 400 mg beadlets of
AstaPure®. Beadlets were ground in a sterile mortar in aseptic
conditions and resuspended and homogenized in 3 mL of a
20% (V/V) sterile solution of Tween-20/distilled water [36]
for a final volume of 3.1 mL. ASTX supplementation (60 pL
of ASTX preparation, equivalent to 10 mg/kg/day of pure
ASTX) was orally administered with a micropipette until day
60 post-infection. This concentration has exhibited
immunomodulatory and anti-inflammatory effects in mice and
other species, including humans [24, 27, 34, 40]. NFMX was
prepared in aseptic conditions by grinding one tablet containing
120 mg of NFMX (Lampit®, Bayer) in a mortar and resuspend-
ing it in 1 mL of sterile distilled water [11]. This solution was
administered orally at a single daily dose of 100 mg/kg/day
[8] (Table 1) ina 60 pL volume. Treatment was carried out until
the day when parasitemia could no longer be detected through
fresh blood preparations, as described above [6, 28, 45].

Animal sacrifice and tissue sampling

Heart and spleen tissues were collected from mice after
they died from infection or when they were euthanized. Mice
were sacrificed either because they were very ill or on day
60 after infection. Euthanasia was performed by cervical
dislocation following protocols established by Norma Oficial
Mexicana  (NOM-033-ZOO-1999) [38], the Bioethics
Committee from UAEM-FMVZ, and from the Council for
International Organizations of Medical Sciences [35]. Blood
samples were taken directly from the heart to obtain sera on
the day of sacrifice and tissues were fixed in 10% formalde-
hyde for histopathological studies.

Histopathological study

Tissues were fixed in 10% formaldehyde for 24 h,
dehydrated in absolute ethanol, and included in paraffin. Tissue
sections (5 um) were prepared and stained with hematoxylin-
eosin and observed under light microscope (Carl Zeiss
Axiostar, USA). Images were recorded with a Tucsen 5 MP
camera (Tucsen, China) with the Image-Pro Plus 7 software.
Tissue samples were studied microscopically at 400X magnifi-
cation to assess parasite burden (amastigote nests observed in
100 random fields). The severity of inflammation was
estimated by the severity of lymphocyte infiltration in the

tissue, in 400 random fields, using the scale proposed by
Barbabosa-Pliego et al. [5]: (—), none; (+), light; (++), moder-
ate; and (+++), severe.

Malondialdehyde (MDA) assay

Malondialdehyde levels were determined in sera following
the instructions of an OxiSelect'™ MDA Adduct ELISA Kit
(Cell Biolabs, USA). Standards and samples were incubated
in a 96-well plate for 2 h, at 37 °C. The MDA-protein adducts
present in the sample and in the standards were probed with an
anti-MDA antibody followed by the HRP-conjugated sec-
ondary antibody, revealed with 3,3',5,5' -tetramethylbenzidine
(TMB) and read by spectrophotometry at 450 nm. The
MDA -protein adducts content in each sample was determined
by comparison with a standard curve that was prepared from
predetermined MDA-BSA standard [16]. A simple linear
regression was used to determine the MDA concentration in
pmol/mL.

Statistical analysis

Analysis of variance (ANOVA) was used to analyze results
from the in vitro viability assay, parasitemia, and MDA. Mean
differences for all assays were assessed by a Tukey test, except
for parasitemia where a Bartlett’s test was used. Statistical
analyses were conducted with the GraphPad Prism 5.0 software
package (GraphPad Software Inc., USA). Differences were
considered significant at p < 0.05.

Results

In vitro Trypanosoma cruzi and Vero cell viability
after exposure to ASTX

Trypomastigote and Vero cell viability was evaluated 24 h
after treatment. Figure 1 shows parasite and Vero cell survival
after treatment, either with ASTX (1, 5, 10, 20, or 30 pg/
100 pL), NFMX (400 pg/100 pL), DMSO (0.33% V/V), or
untreated (C-). Parasite viability was progressively affected
(p <0.05) as ASTX doses were increased; from nearly
100% parasite survival (with no ASTX) down to 18% survival
at the higher doses (20-30 pg/100 pL) of ASTX. Vero cell
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viability was only significantly compromised at 20 and 30 pg/
100 pL ASXT doses (p < 0.05). NFMX affected parasite
viability (p < 0.05) at a 400 pg/100 pL dose and did not com-
promise Vero cell survival. No apparent viability of parasites or
Vero cells was affected after the use of DMSO (0.3% V/V).

Parasites were not affected by ASTX (1-20 pg/100 pL)
when evaluated in co-culture with Vero cells, unlike the results
observed in axenic culture (Table 2). These results call into
question whether the effects of ASTX would be detrimental
or not to the parasite in an in vivo model, and therefore we
decided to continue testing ASTX as a therapeutic treatment
in an experimental animal model.

Parasitemia in BALB/c mice infected with T. cruzi

Experimental groups showed differences in the number of
blood trypomastigotes (Fig. 2). Challenged groups G1 (Tc) and
G2 (Tc/ASTX) showed the highest parasitemia and did not
survive beyond day 23 post-infection. It is worth mentioning
that ASTX supplementation on its own, in infected animals,
did not show any survival advantage over the control group.
Challenged groups G3 and G4, treated with ASTX/NFMX
or just NFMX, respectively, developed low levels of para-
sitemia. This was controlled by days 28 and 22 post-infection,
respectively (Figs. 2A and 2B). Parasitemia levels in groups
G3 (33 £ 12.7 parasites/uL) and G4 (10 £ 5 parasites/puL)
were statistically different (p < 0.05) from those found
in animals in groups Gl (321 + 138.2 parasites/uL) and
G2 (362 + 156.2 parasites/uL) around day 20 post-infection.
All non-infected animals were in good health until the day of
sacrifice (day 60 post-infection).

Anatomopathologic findings

Heart

The size of the heart in all experimental groups (G1-GS8)
did not show differences. Hearts were measured in sagittal
position and average length was 0.79 £ 0.036 cm. No apparent
morphological changes were found macroscopically.

Spleen

Spleens were clearly enlarged in all 7. cruzi-challenged
groups (G1-G4), where splenomegaly was observed (Fig. 3).
The average size of the spleen was 2.4 + (0.26 cm for animals
from groups G1 (Tc) and G2 (Tc/ASTX), and 2 = 0.17 and
1.8 + 0.26 cm in groups G3 and G4, respectively. All control
groups (G6—G8) had an average spleen size of 1.5 £ 0.08 cm,
similar in size and appearance to mice treated with saline
solution (G5), which was considered normal.

Histopathologic findings

Heart

Left ventricle sections displayed differences among
treatment groups. Group G1 (7. cruzi) had the largest number

100 b b LY
z b 1T eruzi (1)
:-.E" d Vero cells (V)
=
S 50
=\° c

Treatment groups

Figure 1. Trypanosoma cruzi trypomastigote and Vero cell survival
after treatment with five different doses of astaxanthin (ASTX, 1, 5,
10, 20, or 30 pg/100 pL). Nifurtimox (NFMX, 400 pg/100 pL),
dimethyl sulfoxide (DMSO, 0.03%), or no treatment was used as
control for the MTS viability assay. Samples were evaluated after
24 h of treatment. Each bar represents the absorbance mean
value + SD. Differences (p < 0.05) among groups, according to
Tukey’s test, are indicated with characters on top of treatment bars.

of amastigote nests (n = 35 + 3.9), and the myocardium dis-
played diffuse inflammatory infiltrates, represented mainly by
lymphoplasmacytes (Fig. 4A). In G2 (Tc/ASXT) the number
of amastigotes (n =24 +3.05) was significantly lower
(» < 0.05), but these animals had increased local inflammation
and a higher number of necrotic cardiomyocytes (Fig. 4B). The
G3 and G4 groups showed light focal lymphoplasmacytes infil-
trate and necrotic cardiomyocytes, with no amastigote nests
present. Non-infected control groups (G5-G8) were normal
(Figs. 4C and 4D, Table 3).

Spleen

Morphological changes in the spleen were observed mainly
as hyperplasia of lymphoid follicles and loss of characteristic
shape. The G1 (Tc) group showed very diffuse and extended
follicles with severe hyperplasia of Ilymphoid follicles
(Fig. 5A). In animals from the G2 group (Tc/ASTX supple-
mentation), slight hyperplasia of lymphoid follicles was
observed (Fig. 5B). In groups G3 (Tc/ASTX/NFMX) and G4
(Tc/NFMX), as well as in control groups (G5-G8), lymphoid
follicles appeared normal, with no pathological changes
(Figs. 5C and 5D).

Malondialdehyde (MDA) test

It is important to note that groups Gl (Tc) and G2
(Tc/ASTX) were not incorporated in the assay because these
animals did not survive the acute phase of the disease, and
blood samples could not be collected. From the remaining
groups, the highest levels of MDA in sera were found in ani-
mals from groups G3 (Tc/ASTX/NFMX) and G4 (Tc¢/NFMX)
with 18.5 + 2.8 pmol/mL and 22.2 + 1.7 pmol/mL, respec-
tively. Control groups, G5 (saline solution), G6 (NFMX),
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Table 2. Effects of ASTX in 7. cruzi infected Vero cell culture (24 h post-treatment).

ASTX or NFMX doses 1 pg 5ug 10 pg 20 ng 30 pg NFMX 400 pg
Parameters/Cell Tc Ve Tc Ve Tc Ve Tc Ve Tc Ve Tc Ve
1P + + + + _ _

EP + + + + _ _

Motility + + + + —

Viability + + + + + + + + — - +
Loss of cellular form - — — - — - — + + +
Integrity of the cell membrane + + + + + + + + — — +

ASTX dose (astaxanthin, 1-40 pg); NFMX (nifurtimox 400 pg); IP (intracellular parasite); EP (extracellular parasite); + (presence);
— (absence); Tc (Trypanosoma cruzi); Ve (Vero cell). Integrity of the cell membrane was evaluated through Trypan Blue assay [28, 45].
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Figure 2. (A): Blood parasitemia observed in mice acutely infected
with Trypanosoma cruzi (Tc) and treated with astaxanthin (ASTX)
and/or nifurtimox (NFMX). Controls included infected animals with
no treatment at all (G1l), or animals treated with ASTX and/or
NFMX without 7. cruzi infection (G5-G8). Blood samples (4 pL)
were collected and microscopically analyzed every other day from
days 5 to 30 post-infection. Mean number of parasites + SD, (B):
Detail of parasitemia for groups G3 (Tc/ASTX/NFMX) and G4 (Tc/
NFMX). Different characters above lines show statistical differ-
ences (p < 0.05) among treatments within the same day of sampling
according to Tukey’s test.

G7 (NFMX/ASTX), and G8 (ASTX), showed 6.3 + 1.7,
6.8 £0.5, 8.7+ 2.2, and 8.9 = 2 pmol/mL of MDA, respec-
tively, while the basal levels (mouse sera without manipulation
and treatment) were 4.0 + 0.4 pmol/mL (Fig. 6).
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Figure 3. Spleen size of animals experimentally infected with
Trypanosoma cruzi. Spleens were collected immediately after the
animal died due to infection or on the day of sacrifice (60 days post-
infection). Each bar represents the mean size value + SD. Statistical
differences (p < 0.05) among groups are shown with different
characters above the bars according to Tukey’s test.

Discussion

Several in vitro research studies have reported that the
antioxidants found in some plants might have a detrimental
effect on the viability of different parasites [1, 19] including
Trypanosomatids [29, 32, 48, 49]. In our laboratory, initial
in vitro results showed that ASTX induced 7 cruzi
trypomastigote death in a dose-dependent manner (Fig. 1).
Therefore, we wanted to address the question of whether
ASTX would be able to control an in vivo T. cruzi infection
using a mouse model. Results did not support our hypothesis,
since ASTX did not control in vivo parasitemia loads (Fig. 2A),
and the infected animals treated only with the antioxidant (G2)
died during the acute phase of infection, as occurred with
infected animals with no treatment (G1 group). Furthermore,
ASTX seemed to interfere with the efficacy of NFMX against
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Figure 4. Histological analysis of heart tissue sections from acutely Tiypanosoma cruzi infected mice, treated with astaxanthin and/or
nifurtimox. Heart tissue sections from the left ventricle were processed on the day animals died (either due to infection or when euthanized on
day 60 post-infection). Tissue sections (5 pm) were stained with hematoxylin-eosin. Representative micrographs are shown for mice from the
following groups: (A) G1 (Tc); (B) G2 (Tc/ASTX); (C) G5 (saline solution); (D) G8 (ASTX). The micrograph from G5 could represent all
groups from G3 to G7; all of them were considered histologically normal. Black arrow, amastigote nests; white arrow, lymphoplasmacytic

infiltrate. (400x amplification).

Table 3. Myocardial histopathological abnormalities found in mice during the acute phase of 7. cruzi experimental infection (60 days post-

infection)

Parameters/group Gl G2 G3 G4 G5 Go6 G7 G8
Focal lymphoplasmacytes - ++ + + — - — _
Diffuse lymphoplasmacytes + — — — - — _ _
Cardiomyocyte necrosis + ++ + + — - — —
Amastigote nests (mean + SD) 35+ (3.9) 24 + (3.05) 0 0 0 0 0 0

Treatment groups: G1: T cruzi; G2: T. cruzi/ASTX; G3: T. cruzi/ ASTX/NFMX; G4: T. cruzi/NFMX; GS: saline solution; G6: NFMX; G7:
ASTX/NFMX; G8: ASTX. Abnormality scale: —, none; +, light; ++, moderate; and +++, severe [5]; +: standard deviation.

the parasites in vivo, since parasitemias observed in animals
from group G3 (Tc/ASTX/NFMX) were significantly higher
(p < 0.05) and longer (p < 0.05), than parasitemias found in
infected animals from group G4 treated only with NFMX
(Fig. 2B). Therefore, also considering the results reported by
Wen et al. [51], who found that PBN (phenyl-a-tert-butyl-
nitrone), a synthetic antioxidant, used in Sprague Dawley rats
infected with 7' cruzi, did not decrease parasite load during
the acute phase of infection, it could be concluded that
the use of antioxidants is not indicated during this phase of

Chagas disease. However, strong antioxidants, such as ASTX,
could still be useful during the chronic phase of Chagas
disease. This idea is supported by the findings of Magao
et al. [30] and Ribeiro et al. [42], who found that supplemen-
tation with vitamins E and C after the use of benznidazole for
the treatment of Chagas disease in humans reduced oxidative
stress, and contributed to minimizing the risk of chagasic
cardiomyopathy in chronically infected patients. If we con-
sider that ASTX is a stronger antioxidant than vitamins
E and C, and additionally that it has anti-inflammatory and
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Figure 5. Histological analysis of spleen tissue sections in acutely Trypanosoma cruzi infected mice, treated with astaxanthin and/or
nifurtimox. Spleen tissue sections (5 pum) were obtained at 60 days post-infection or at the time the animals died due to infection, and stained
with hematoxylin-eosin. Representative micrographs of mice (BALB/c) from the following groups are shown: (A) G1 (Tc); (B) G2 (Tc/
ASTX); (C) G5 (saline solution); (D) G8 (ASTX). The micrograph from G5 could represent all groups from G3 to G7; all of them were
considered histologically normal. White arrow: lymphoid follicles; Black arrow: red pulp.

immunomodulatory properties [17, 34, 40], the question that
remains to be answered is whether ASTX supplementation,
after the administration of anti-chagasic agents such as
benznidazole or nifurtimox during the chronic phase of Chagas
disease, would be beneficial to improve chronic chagasic
cardiomyopathy.

When comparing the histopathological appearance of
the left ventricle from animals in groups Gl (Tc) and
G2 (Tc/ASTX), it was observed that G2 animals had an incre-
ment in the number of focal lymphoplasmacytic infiltrations
and necrotic cardiomyocytes, and a lower number of amastig-
ote nests (Figs. 4A, 4B and Table 3). These differences suggest
that ASTX had an immunomodulatory effect, which would
promote the strong immune reaction observed, accompanied
by a lower number of amastigote nests in cardiac tissue.
It has been reported that the immunomodulatory properties
of ASTX include the stimulated proliferation of T and
B lymphocytes and NK cells, production of pro-inflammatory
cytokines such as IL-1a and TNF-q, as well as promoting an
increment in antibody production against various antigens
[4, 12, 39, 40]. Therefore, it would be interesting to
further study whether ASTX could be used as a therapeutic
drug in Chagas disease, either in combination with an
anti-7. cruzi non-oxidative stress-inducing drug or in

combination with antiparasitic (prophylactic or therapeutic)
vaccines.

Splenomegaly has been reported in animals and humans
infected with 7. cruzi. This reaction is related to host inflamma-
tory responses to the parasitic infection [41], and reactive
oxygen species (ROS) generated by neutrophils and macro-
phages in the spleen [3, 4, 44], which induce the expression
of inflammatory genes that contribute to inflammation [26].
In the present study, animals from non-infected groups had
an average spleen size of 1.5 cm with normal histology.
In comparison, animals from all infected groups (G1-G4)
showed splenomegaly. The average spleen size for groups Gl
(Tc) and G2 (Tc/ASTX) (Fig. 3) was 2.3 cm, i.e. 53% larger
in comparison with the non-infected control groups.
These spleens displayed hyperplasic lymphoid follicles
(Fig. 5A). Animals from group G3 (Tc/ASTX/NFMX) and
G4 (Tc/NFMX) showed 33% (2.1 cm) and 20% (1.8 cm)
larger spleens than normal animals, respectively (Fig. 3).
This inflammatory response could be partially explained by
the fact that, before infection was controlled by NFMX, there
was a period when parasites proliferated in the animals and
inflammation was triggered.

Oxidative stress is one of the main features of the immune
system that is triggered during the development of chagasic
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Figure 6. Malondialdehyde serum levels in animals after experi-
mental Trypanosoma cruzi infection under treatments G3—GS at the
day of sacrifice (60 days post-infection). Each bar represents the
mean pmol/mL value = SD. Statistical differences (p < 0.05)
among groups are shown with different characters above the bars.
Groups G1 and G2 were not included because the mice died before
day 30 post-infection.

cardiomyopathy [20]. Oxidative stress induced by 7. cruzi
infection in the myocardium can be studied through markers
such as MDA [16]. Our results showed statistical differences
between serum MDA from infected (G3 and G4 groups) and
non-infected animals (G5-G8 groups) (Fig. 6). However,
unlike what was expected, no differences were observed in
non-infected animals among groups receiving NFMX,
ASTX/NFMX, and ASTX or saline solution. This outcome
is difficult to explain as NFMX was expected to increase
MDA values and ASTX to reduce them. A possible explana-
tion could be that the MDA assay used to detect OS was not
sensitive enough to identify small differences, and that the
effects of NFMX and ASTX on mouse physiology were not
large enough to be detected. 7 cruzi infection did induce OS
and was detected by the MDA assay. However, no statistical
differences were observed between serum MDA levels from
groups G3 and G4. We had hypothesized that animals receiv-
ing ASTX would have lower levels of OS [17], but this could
not be proven. This outcome could probably also be explained
if we assume that the doses of ASTX used in this experiment
were not sufficiently high to promote an antioxidant effect
detectable by the MDA assay. As a whole, the findings of
the present study do not support the idea that ASTX has a
positive effect during an acute 7. cruzi infection and the
question that remains to be answered is whether ASTX could
be used in chronic Chagas infections to possibly improve the
results observed with other antioxidants, such as vitamins
E and C or synthetic antioxidants such as PNB, in chronically
infected chagasic human patients [30] and rats [51],
considering that ASTX is a more active antioxidant than those
previously described [21].

Conclusions

The use of ASTX during the acute phase of 7. cruzi infec-
tion is not recommended, whether alone or in combination
with therapeutic drugs that induce oxidative stress, such as
NFMX. However, the potential beneficial effects of ASTX if
used in the chronic phase of Chagas disease, or in combination
with non-OS—inducing antiparasitic drugs, or with prophylactic
or therapeutic vaccines, remain to be studied.
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